skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whitney, Taylor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study investigated the sensitivity of pyrocumulonimbus (PyroCb) induced by the California Creek fire of 2020 to the amount and type of surface fuels, within the WRF‐SFIRE modeling system. Satellite data were used to derive fire arrival times to constrain fire progression, and to augment the fuel characterization with better estimates of combustible vegetation accounting for tree mortality. Machine learning was employed to classify standing dead vegetation from aerial imagery, which was then added as a custom fuel class along with the standard Anderson fuel categories. Simulations using this new fuel class produced a larger and more vigorous PyroCb than the control run, however, still under‐predicted the cloud top. Additional augmentation of fuel mass to represent the accumulation of dead vegetation on the forest floor further improved the simulations, demonstrating the efficacy of representing both dead standing and fallen vegetation to produce more realistic PyroCb and smoke simulations. 
    more » « less